LRIG1 acts as a critical regulator of melanoma cell invasion, migration, and vasculogenic mimicry upon hypoxia by regulating EGFR/ERK-triggered epithelial–mesenchymal transition

Author:

Li Wei1,Zhou Yubo2ORCID

Affiliation:

1. Department of Burns, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu 610072, P.R. China

2. Department of Emergency, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu 610072, P.R. China

Abstract

Abstract Intratumoral hypoxia is a well-known feature of solid cancers and constitutes a major contributor to cancer metastasis and poor outcomes including melanoma. Leucine-rich repeats and Ig-like domains 1 (LRIG1) participate in the aggressive progression of several tumors, where its expression is frequently decreased. In the present study, hypoxia exposure aggravated melanoma cell invasion, migration, vasculogenic mimicry (VM), and epithelial–mesenchymal transition (EMT). During this process, LRIG1 expression was also decreased. Importantly, overexpression of LRIG1 notably counteracted hypoxia-induced invasion, migration, and VM, which was further augmented after LRIG1 inhibition. Mechanism analysis corroborated that LRIG1 elevation muted hypoxia-induced EMT by suppressing E-cadherin expression and increasing N-cadherin expression. Conversely, cessation of LRIG1 further potentiated hypoxia-triggered EMT. Additionally, hypoxia stimulation activated the epidermal growth factor receptor (EGFR)/ERK pathway, which was dampened by LRIG1 up-regulation but further activated by LRIG1 inhibition. More important, blocking this pathway with its antagonist erlotinib abrogated LRIG1 suppression-induced EMT, and subsequently cell invasion, migration, and VM of melanoma cells under hypoxia. Together, these findings suggest that LRIG1 overexpression can antagonize hypoxia-evoked aggressive metastatic phenotype by suppressing cell invasion, migration, and VM via regulating EGFR/ERK-mediated EMT process. Therefore, these findings may provide a promising target for melanoma therapy.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Reference26 articles.

1. Cancer statistics, 2016;Siegel;CA Cancer J. Clin.,2016

2. Systemic therapy for metastatic melanoma in 2012: dawn of a new era;Bhatia;J. Natl. Compr. Canc. Netw.,2012

3. Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER;van den Beucken;Nat. Commun.,2014

4. Hypoxia as a cause of treatment failure in non-small cell carcinoma of the lung;Brustugun;Semin. Radiat. Oncol.,2015

5. Hypoxic pathobiology of breast cancer metastasis;Schito;Biochim. Biophys. Acta,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3