Regulation of Myosin-5b by Rab11a and the Rab11 family interacting protein 2

Author:

Ji Huan-Hong1,Yao Lin-Lin1,Liu Chang1,Li Xiang-dong12

Affiliation:

1. Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Abstract Mammalian myosin-5b (Myo5b) plays a critical role in the recycling of endosomes to the plasma membrane via the interactions with Rab11a and the Rab11 family interacting protein 2 (FIP2). However, it remains unclear on how Rab11a and FIP2 are coordinated in tethering Myo5b with the vesicles and activating the motor function of Myo5b. In the present study, we show that Rab11a binds to the globular tail domain (GTD) of Myo5b and this binding abolishes the head–GTD interaction of Myo5b, thus activating the motor function of Myo5b. On the other hand, FIP2 directly interacts with both Rab11a and the tail of Myo5b, and the binding of FIP2 to Myo5b does not affect Myo5b motor function. Moreover, Rab11a displays higher affinity to FIP2 than to Myo5b, suggesting that Rab11a binds preferentially to FIP2 than to Myo5b. Based on the current findings, we propose that the association of Myo5b with vesicles is mediated by FIP2, which bridges Myo5b and the membrane-bound Rab11a, whereas the motor function of Myo5b is regulated by Rab11a.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spire2 and Rab11a synergistically activate myosin-5b motor function;Biochemical and Biophysical Research Communications;2024-04

2. Molecular Mechanisms of AMPA Receptor Trafficking in the Nervous System;International Journal of Molecular Sciences;2023-12-21

3. Multiple functions and dual characteristics of RAB11A in cancers;Biochimica et Biophysica Acta (BBA) - Reviews on Cancer;2023-11

4. A whole genome scan reveals distinct features of selection in Zhaotong cattle of Yunnan province;Animal Genetics;2023-10-05

5. Integrating intracellular nanovesicles into integrin trafficking pathways and beyond;Cellular and Molecular Life Sciences;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3