Locally formed 5-hydroxytryptamine stimulates phosphate transport in cultured opossum kidney cells and in rat kidney

Author:

HAFDI Zakia1,COUETTE Sylvianne1,COMOY Etienne2,PRIE Dominique1,AMIEL Claude1,FRIEDLANDER Gerard1

Affiliation:

1. Department of Physiology and INSERM U 426 & IFR-2, Faculte de Medecine Xavier-Bichat, Université Paris 7, B.P. 416, 75870 Paris Cedex 18, France

2. Department of Clinical Biology, Institut Gustave-Roussy, Villejuif, France

Abstract

Renal proximal tubular cells have been shown to express aromatic l-amino acid decarboxylase (l-AAAD), which converts l-dopa into dopamine and 5-hydroxytryptophan [(OH)Trp] into 5-hydroxytryptamine (5-HT; serotonin). Because 5-HT receptors have been demonstrated in proximal cells, we hypothesized that 5-HT may act as an autocrine/paracrine modulator of proximal transport. We evaluated this possibility in opossum kidney (OK) cells, a renal epithelial cell line with a proximal phenotype expressing 5-HT1B receptors, and in intact anaesthetized rats. 5-HT synthesis by OK cells increased with incubation time and (OH)Trp concentration, and was abolished by benserazide, an l-AAAD inhibitor. 5-HT reversed parathyroid hormone (PTH)-induced cAMP accumulation in a pertussis toxin-sensitive manner and reduced the PTH inhibition of Pi uptake without affecting the NaPi-4 mRNA level. The effects of 5-HT on cAMP generation and Na–Pi co-transport were reproduced by (OH)Trp, except in the presence of benserazide, and by l-propranolol and dihydroergotamine, two 5-HT1B receptor agonists. In rats, (OH)Trp and dihydroergotamine decreased fractional Pi excretion. Benserazide abolished the effect of (OH)Trp but not that of dihydroergotamine. In conclusion: (i) locally generated 5-HT blunts the inhibitory effect of PTH on Na–Pi co-transport in OK cells; (ii) endogenous 5-HT decreases Pi excretion in rats; and (iii) 5-HT is a paracrine modulator involved in the physiological regulation of renal Pi transport.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3