Fingerprinting of polysaccharides attacked by hydroxyl radicals in vitro and in the cell walls of ripening pear fruit

Author:

FRY Stephen C.1,DUMVILLE Jo C.1,MILLER Janice G.1

Affiliation:

1. The Edinburgh Cell Wall Group, Institute of Cell and Molecular Biology, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, U.K.

Abstract

Hydroxyl radicals (•OH) may cause non-enzymic scission of polysaccharides in vivo, e.g. in plant cell walls and mammalian connective tissues. To provide a method for detecting the action of endogenous •OH in vivo, we investigated the products formed when polysaccharides were treated with •OH (generated in situ by ascorbate-H2O2-Cu2+ mixtures) followed by NaB3H4. Treatment with •OH increased the number of NaB3H4-reacting groups present in citrus pectin, homogalacturonan and tamarind xyloglucan. This increase is attributed partly to the formation of glycosulose and glycosulosuronic acid residues, which are then reduced back to the original (but radioactive) sugar residues and their epimers by NaB3H4. The glycosulose and glycosulosuronic acid residues were stable for > 16h at 20°C in ethanol or buffer (pH4.7), but were destroyed in alkali. Driselase-digestion of the radiolabelled polysaccharides yielded characteristic patterns of 3H-products, which included galactose and galacturonate from pectin, and isoprimeverose, galactose, glucose and arabinose from xyloglucan. Pectin yielded at least eight 3H-labelled anionic products, separable by electrophoresis at pH3.5. The patterns of radioactive products form useful ‘fingerprints’ by which •OH-attacked polysaccharides may be recognized. Applied to the cell walls of ripening pear (Pyrus communis) fruit, the method gave evidence for progressive •OH radical attack on polysaccharides during the softening process.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3