Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages

Author:

Hazell L J1,Stocker R1

Affiliation:

1. The Heart Research Institute, Biochemistry Group, 145 Missenden Road, Camperdown, N.S.W. 2050, Australia

Abstract

Oxidation of low-density lipoprotein (LDL) lipid is thought to represent the initial step in a series of oxidative modification reactions that ultimately transform this lipoprotein into an atherogenic high-uptake form that can cause lipid accumulation in cells. We have studied the effects of hypochlorite, a powerful oxidant released by activated monocytes and neutrophils, on isolated LDL. Exposure of LDL to reagent hypochlorite (NaOCl) at 4 degrees C resulted in immediate and preferential oxidation of amino acid residues of apoprotein B-100, the single protein associated with LDL. Neither lipoprotein lipid nor LDL-associated antioxidants, except ubiquinol-10, represented major targets for this oxidant. Even when high concentrations of NaOCl were used, only low levels of lipid hydroperoxides could be detected with the highly sensitive h.p.l.c. post-column chemiluminescence detection method. Lysine residues of apoprotein B-100 quantitatively represented the major target, scavenging some 68% of the NaOCl added, with tryptophan and cysteine together accounting for an additional 10% of the oxidant. Concomitant with the loss of LDL's amino groups, chloramines were formed and the anionic surface charge of the lipoprotein particle increased, indicated by a 3-4-fold increase in electrophoretic mobility above that of native LDL on agarose gels. While both these changes could be initially reversed by physiological reductants such as ascorbic acid and methionine, incubation of the NaOCl-modified LDL at 37 degrees C resulted in increasing resistance of the modified lysine residues against reductive reversal. Exposure of mouse peritoneal macrophages to NaOCl-oxidized LDL resulted in increased intracellular concentrations of cholesterol and cholesteryl esters. These findings suggest that lipid-soluble antioxidants associated with LDL do not efficiently protect the lipoprotein against oxidative damage mediated by hypochlorite, and that extensive lipid oxidation is not a necessary requirement for oxidative LDL modification that leads to a high-uptake form of the lipoprotein.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 283 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3