Mammalian class Sigma glutathione S-transferases: catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases

Author:

JOWSEY Ian R.1,THOMSON Anne M.1,FLANAGAN Jack U.1,MURDOCK Paul R.2,MOORE Gary B. T.3,MEYER David J.4,MURPHY Gregory J.3,SMITH Stephen A.3,HAYES John D.1

Affiliation:

1. Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, U.K.

2. Department of Gene Expression Sciences, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park (North), Coldharbour Road, The Pinnacles, Harlow, Essex CM19 5AD, U.K.

3. Department of Vascular Biology, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park (North), Coldharbour Road, The Pinnacles, Harlow, Essex CM19 5AD, U.K.

4. Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.

Abstract

GSH-dependent prostaglandin D2 synthase (PGDS) enzymes represent the only vertebrate members of class Sigma glutathione S-transferases (GSTs) identified to date. Complementary DNA clones encoding the orthologous human and rat GSH-dependent PGDS (hPGDS and rPGDS, respectively) have been expressed in Escherichia coli, and the recombinant proteins isolated by affinity chromatography. The purified enzymes were both shown to catalyse specifically the isomerization of prostaglandin (PG) H2 to PGD2. Each transferase also exhibited GSH-conjugating and GSH-peroxidase activities. The ability of hPGDS to catalyse the conjugation of aryl halides and isothiocyanates with GSH was found to be less than that of the rat enzyme. Whilst there is no difference between the enzymes with respect to their Km values for 1-chloro-2,4-dinitrobenzene, marked differences were found to exist with respect to their Km for GSH (8mM versus 0.3mM for hPGDS and rPGDS, respectively). Using molecular modelling techniques, amino acid substitutions have been identified in the N-terminal domain of these enzymes that lie outside the proposed GSH-binding site, which may explain these catalytic differences. The tissue-specific expression of PGDS also varies significantly between human and rat; amongst the tissues examined, variation in expression between the two species was most apparent in spleen and bone marrow. Differences in catalytic properties and tissue-specific expression of hPGDS and rPGDS appears to reflect distinct physiological roles for class Sigma GST between species. The evolution of divergent functions for the hPGDS and rPGDS is discussed in the context of the orthologous enzyme from chicken.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3