Glucose promotion of GABA metabolism contributes to the stimulation of insulin secretion in β-cells

Author:

Pizarro-Delgado Javier1,Braun Matthias2,Hernández-Fisac Inés1,Martín-Del-Río Rafael3,Tamarit-Rodriguez Jorge1

Affiliation:

1. Department of Biochemistry, Medical School, Complutense University, Madrid 28040, Spain

2. Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Oxford OX3 7LJ, U.K.

3. Research Department, Hospital ‘Ramón y Cajal’, Madrid 28034, Spain

Abstract

We have demonstrated recently that branched-chain α-keto acid stimulation of insulin secretion is dependent on islet GABA (γ-aminobutyric acid) metabolism: GABA transamination to succinic semialdehyde is increased by 2-oxoglutarate, generated in α-keto acid transamination to its corresponding α-amino acid. The present work was aimed at investigating whether glucose also promotes islet GABA metabolism and whether the latter contributes to the stimulation of insulin secretion. Glucose (20 mM) decreased both the content and release of islet GABA. Gabaculine (1 mM), a GABA transaminase inhibitor, partially suppressed the secretory response of rat perifused islets to 20 mM glucose at different L-glutamine concentrations (0, 1 and 10 mM), as well as the glucose-induced decrease in islet GABA. The drug also reduced islet ATP content and the ATP/ADP ratio at 20 mM glucose. Exogenous succinic semialdehyde induced a dose-dependent increase in islet GABA content by reversal of GABA transamination and a biphasic insulin secretion in the absence of glucose. It depolarized isolated β-cells and triggered action potential firing, accompanied by a reduction of membrane currents through ATP-sensitive K+ channels. The gene expression and enzyme activity of GABA transaminase were severalfold higher than that of 2-oxoglutarate dehydrogenase in islet homogenates. We conclude that, at high glucose concentrations, there is an increased diversion of glucose metabolism from the citric acid cycle into the ‘GABA shunt’. Semialdehyde succinic acid is a cell-permeant ‘GABA-shunt’ metabolite that increases ATP and the ATP/ADP ratio, depolarizes β-cells and stimulates insulin secretion. In summary, an increased islet GABA metabolism may trigger insulin secretion.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3