Sterol-regulatory-element-binding protein 1c mediates the effect of insulin on the expression of Cidea in mouse hepatocytes

Author:

Wang Rui1,Kong Xingxing1,Cui Anfang1,Liu Xiaojun1,Xiang Ruolan2,Yang Yanli3,Guan Youfei2,Fang Fude1,Chang Yongsheng1

Affiliation:

1. National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China

2. Department of Physiology and Pathophysiology, Beijing University Health Science Center, Beijing 100191, China

3. Deparment of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China

Abstract

Members of the Cide [cell death-inducing DFFA (DNA fragmentation factor-α)-like effector] gene family have been reported to be associated with lipid metabolism. In the present study, we show that Cidea mRNA levels are markedly reduced by fasting and are restored upon refeeding in mouse livers. To elucidate the molecular mechanism, the promoter region of the mouse Cidea gene was analysed and a putative SRE (sterol-regulatory element) was identified. Studies using luciferase reporter constructs together with electrophoretic mobility-shift assays and chromatin immunoprecipitation confirmed the binding of SREBP-1c (SRE-binding protein 1c) to the putative SRE. Furthermore, adenovirus-mediated overexpression of SREBP-1c led to a dramatic increase in Cidea mRNA. In contrast with the induction of Cidea expression by insulin and TO901317 in wild-type mouse hepatocytes, the stimulatory effects were lost in hepatocytes prepared from SREBP-1c-null mice. Adenovirus-mediated overexpression of Cidea in hepatocytes promoted lipid accumulation and triacylglycerol (triglyceride) storage; however, knockdown of Cidea compromised the ability of SREBP-1c to stimulate lipid accumulation. Taken together, these results suggest that SREBP-1c directly mediates the effect of insulin on Cidea in hepatocytes and that Cidea, at least in part, mediates SREBP-1c-dependent lipid accumulation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3