Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study

Author:

Badar-Goffer R S1,Ben-Yoseph O1,Bachelard H S2,Morris P G1

Affiliation:

1. Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K.

2. Division of Biochemistry, U.M.D.S. (St. Thomas's Hospital), London SE1 7EH, U.K.

Abstract

Time courses of incorporation of 13C from 13C-labelled glucose and/or acetate into the individual carbon atoms of amino acids, citrate and lactate in depolarized cerebral tissues were monitored by using 13C-n.m.r. spectroscopy. There was no change in the maximum percentage of 13C enrichments of the amino acids on depolarization, but the maxima were reached more rapidly, indicating that rates of metabolism in both glycolysis and the tricarboxylic acid cycle were accelerated. Although labelling of lactate and of citrate approached the theoretical maximum of 50%, labelling of the amino acids was always below 20%, suggesting that there is a metabolic pool or compartment that is inaccessible to exogenous substrates. Under resting conditions labelling of citrate and of glutamine from [1-13C]glucose was not detected, whereas both were labelled from [2-13C]acetate, which is considered to reflect glial metabolism. In contrast, considerable labelling of these two metabolites from [1-13C]glucose was observed in depolarized tissues, suggesting that the increased metabolism may be due to increased consumption of glucose by glial cells. The labelling patterns on depolarization from [1-13C]glucose alone and from both precursors [( 1-13C]glucose plus [2-13C]acetate) were similar, which also indicates that the changes are due to increased consumption of glucose rather than acetate.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3