Kinetics of inhibition of platelet calpain II by human kininogens

Author:

Bradford H N1,Schmaier A H123,Colman R W123

Affiliation:

1. Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A.

2. Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A.

3. Department of Pathology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A.

Abstract

The plasma kininogens, high-molecular-mass and low-molecular-mass kininogens, are the most potent plasma inhibitors of platelet calpain. We explored the kinetic mechanisms for kininogen inhibition of calpain by comparing calpain inactivation by human high-molecular-mass kininogen (HK) and human low-molecular-mass kininogen (LK). With a [14C]methylated alpha-casein substrate, the inhibition of calpain by HK did not follow classic Michaelis-Menten kinetics. With the use of a fluorogenic assay with the dipeptide substrate for calpain, 3-carboxypropionyl-leucyltyrosine 7-(4-methyl)coumarylamide, the inhibition by HK and LK fitted a kinetic model of tight-binding inhibition. LK was found to be a non-competitive inhibitor of platelet calpain with a Ki of 2.7 nM. HK showed mixed non-competitive inhibition of calpain with a Ki of 2.3 nM in the absence of substrate and Ki of 0.71 nM in the presence of saturating substrate, almost 4-fold tighter than LK. Proteolysis of HK by plasma and tissue kallikreins did not influence its ability to inhibit calpain. Digestion of the HK light chain by Factor XIa also did not alter its calpain-inhibitory function. These studies indicate that the kininogens are tight-binding non-competitive inhibitors of platelet calpain, the inhibitory domain in each case being mainly on the heavy chain. The light chain of HK appears to influence its kinetic behaviour.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3