2-mercaptoethanol restores the ability of nuclear factor κB (NF κB) to bind DNA in nuclear extracts from interleukin 1-treated cells incubated with pyrollidine dithiocarbamate (PDTC). Evidence for oxidation of glutathione in the mechanism of inhibition of NFκB by PDTC

Author:

BRENNAN Paul1,O'NEILL Luke A. J.2

Affiliation:

1. 1Department of Biochemistry, Trinity College, Dublin 2, Ireland

2. 2Department of Biochemistry, Trinity College, Dublin 2, Ireland

Abstract

The metal chelator and anti-oxidant pyrollidine dithiocarbamate (PDTC) has been used extensively in studies implicating reactive oxygen intermediates in the activation of nuclear factor κB (NFκB). In agreement with other studies, we have shown that PDTC inhibits NFκB activation in response to the pro-inflammatory cytokines interleukin 1 (IL1) and tumour necrosis factor (TNF). However, we have found that the inhibition was reversed by treatment of inhibited nuclear extracts with the reducing agent 2-mercaptoethanol. This was observed in extracts prepared from IL1-treated EL4.NOB-1 thymoma cells and TNF-treated Jurkat E6.1 lymphoma cells. These results suggested that the inhibition was caused by oxidation of NFκB on a sensitive thiol, possibly on the p50 subunit (which was detected in NFκB complexes in both cell types), and not by inhibition of the activation pathway. The possibility that PDTC was acting as a pro-oxidant was therefore investigated. PDTC caused an increase in oxidized glutathione, suggesting that it acts as an oxidizing agent in the cells tested rather than as an anti-oxidant. Similar results were obtained with diamide, a compound designed to oxidize glutathione. Finally, an increase in the ratio of oxidized to reduced glutathione was shown to inhibit NFκB–DNA binding in vitro. On the basis of these results we suggest that, while NFκB activation is unaffected by PDTC, DNA binding is inhibited through a mechanism involving a shift towards oxidizing conditions, and that this is the mechanism of action of both PDTC and diamide in the cells tested here.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3