New insights into amino acid metabolism, β-cell function and diabetes

Author:

NEWSHOLME Philip1,BRENNAN Lorraine1,RUBI Blanca2,MAECHLER Pierre2

Affiliation:

1. Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland

2. Department of Cell Physiology and Metabolism, University Medical Centre, rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland

Abstract

Specific amino acids are now known to acutely and chronically regulate insulin secretion from pancreatic β-cells in vivo and in vitro. Understanding the molecular mechanisms by which amino acids regulate insulin secretion may identify novel targets for future diabetes therapies. Mitochondrial metabolism is crucial for the coupling of amino acid and glucose recognition to the exocytosis of the insulin granules. This is illustrated by in vitro and in vivo observations discussed in the present review. Mitochondria generate ATP, which is the main coupling factor in insulin secretion; however, the subsequent Ca2+ signal in the cytosol is necessary, but not sufficient, for full development of sustained insulin secretion. Hence mitochondria generate ATP and other coupling factors serving as fuel sensors for the control of the exocytotic process. Numerous studies have sought to identify the factors that mediate the amplifying pathway over the Ca2+ signal in nutrient-stimulated insulin secretion. Predominantly, these factors are nucleotides (GTP, ATP, cAMP and NADPH), although metabolites have also been proposed, such as long-chain acyl-CoA derivatives and the key amino acid glutamate. This scenario highlights further the importance of the key enzymes or transporters, glutamate dehydrogenase, the aspartate and alanine aminotransferases and the malate/aspartate shuttle, in the control of insulin secretion. Therefore amino acids may play a direct or indirect (via generation of putative messengers of mitochondrial origin) role in insulin secretion.

Publisher

Portland Press Ltd.

Subject

General Medicine

Reference85 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3