Distinction between binding and endocytosis of human asialo-transferrin by the rat liver

Author:

Regoeczi Erwin1,Taylor Patricia1,Hatton Mark W. C.1,Wong Kwong-Loi1,Koj Alex1

Affiliation:

1. Plasma Protein Research Laboratory, McMaster University Health Sciences Centre, Hamilton, Ont., Canada L8S 4J9

Abstract

The ability of the rat liver to bind and endocytose human asialo-transferrin was investigated in vivo. Asialo-transferrin was separated from incompletely desialylated transferrin and neuraminidase by chromatography before being labelled with 125I. Plasma radioactivity curves and hepatic radioactivity contents measured over a 1270-fold dose range led to the following observation. At the lowest dose (0.4μg/100g body wt.), the distribution of asialo-transferrin between plasma and liver resembled a reversible reaction reaching equilibrium in approx. 20min. After 35min, 93% of the dose was recovered with the plasma and liver as protein-bound radioactivity. Most of the asialo-transferrin associated with the liver could be displaced by asialo-orosomucoid, indicating that binding of asialo-transferrin to the galactose-specific lectin on the plasma membrane of hepatocytes was not followed by a signal for endocytosis. A range of doses, up to an average of 509.2μg of asialo-transferrin per 100g body wt., resulted in progressive increments in asialo-transferrin catabolism, as evidenced by lower dose recoveries and increased concentrations of non-protein-associated radioactivity in the liver and plasma volume. These observations indicate that binding and endocytosis of human asialo-transferrin by the rat hepatocyte are distinct phenomena. Individual asialo-transferrin molecules, although readily bound by the hepatic lectin, lack either the quantity or spacing of terminal galactose residues necessary for triggering endocytosis. Although endocytosis is induced by several asialo-transferrin molecules acting synergistically, preliminary experiments with asialo-glycopeptides and other substances have so far failed to provide further insight into the chemical basis of the signal for endocytosis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3