Calcium stimulates luteinizing-hormone (lutropin) exocytosis by a mechanism independent of protein kinase C

Author:

van der Merwe P A1,Millar R P1,Davidson J S1

Affiliation:

1. Medical Research Council Regulatory Peptides Research Unit, Department of Chemical Pathology, University of Cape Town Medical School, Observatory 7925, Cape Town, South Africa.

Abstract

Using permeabilized gonadotropes, we examined whether Ca2(+)-stimulated luteinizing-hormone (LH) exocytosis is mediated by the Ca2(+)-activated phospholipid-dependent protein kinase (protein kinase C). In the presence of high [Ca2+]free (pCa 5), alpha-toxin-permeabilized sheep gonadotropes secrete a burst of LH and then become refractory to maintained high [Ca2+]free. The protein kinase C activator phorbol myristate acetate (PMA) is able to stimulate further LH release from cells made refractory to high [Ca2+]free, suggesting that Ca2+ does not stimulate LH release by activating protein kinase C. Staurosporine, a protein kinase C inhibitor, inhibited PMA-stimulated (50% inhibition at 20 nM), but not Ca2(+)-stimulated, LH exocytosis. In cells desensitized to PMA by prolonged exposure to a high PMA concentration, Ca2(+)-stimulated LH exocytosis (when corrected for depletion of total cellular LH) was not inhibited. Ba2+ was able to stimulate LH exocytosis to a maximal extent similar to Ca2+, although higher Ba2+ concentrations were necessary. Ba2+ and Ca2+ stimulated LH exocytosis with a similar time course, and both were inhibitory at high concentrations. Furthermore, cells made refractory to Ca2+ were also refractory to Ba2+. These data strongly suggest that Ba2+ and Ca2+ act through the same mechanism. Since Ba2+ is a poor activator of protein kinase C, these findings are additional evidence against a major role for protein kinase C in mediating Ca2(+)-stimulated LH exocytosis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3