Evaluation of spice and herb as phyto-derived selective modulators of human retinaldehyde dehydrogenases using a simple in vitro method

Author:

Bui Thi Bao Chau123ORCID,Nosaki Shohei14,Kokawa Mito4,Xu Yuqun1,Kitamura Yutaka4,Tanokura Masaru12ORCID,Hachimura Satoshi12,Miyakawa Takuya1

Affiliation:

1. Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

2. Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

3. Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan

4. Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan

Abstract

Abstract Selective modulation of retinaldehyde dehydrogenases (RALDHs)—the main aldehyde dehydrogenase (ALDH) enzymes converting retinal into retinoic acid (RA), is very important not only in the RA signaling pathway but also for the potential regulatory effects on RALDH isozyme-specific processes and RALDH-related cancers. However, very few selective modulators for RALDHs have been identified, partly due to variable overexpression protocols of RALDHs and insensitive activity assay that needs to be addressed. In the present study, deletion of the N-terminal disordered regions is found to enable simple preparation of all RALDHs and their closest paralog ALDH2 using a single protocol. Fluorescence-based activity assay was employed for enzymatic activity investigation and screening for RALDH-specific modulators from extracts of various spices and herbs that are well-known for containing many phyto-derived anti-cancer constituents. Under the established conditions, spice and herb extracts exhibited differential regulatory effects on RALDHs/ALDH2 with several extracts showing potential selective inhibition of the activity of RALDHs. In addition, the presence of magnesium ions was shown to significantly increase the activity for the natural substrate retinal of RALDH3 but not the others, while His-tag cleavage considerably increased the activity of ALDH2 for the non-specific substrate retinal. Altogether we propose a readily reproducible workflow to find selective modulators for RALDHs and suggest potential sources of selective modulators from spices and herbs.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3