More evidence for prediction model of radiosensitivity

Author:

Du Zixuan12,Zhang Xinyan3,Tang Zaixiang12ORCID

Affiliation:

1. Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou 215123, China

2. Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China

3. School of Data Science and Analytics, Kennesaw State University, Kennesaw, GA 30144

Abstract

Abstract With the development of precision medicine, searching for potential biomarkers plays a major role in personalized medicine. Therefore, how to predict radiosensitivity to improve radiotherapy is a burning question. The definition of radiosensitivity is complex. Radiosensitive gene/biomarker can be useful for predicting which patients would benefit from radiotherapy. The discovery of radiosensitivity biomarkers require multiple pieces of evidence. A prediction model of breast cancer radiosensitivity based on six genes was established. We had put forward some supplements on the basis of the present study. We found that there were no differences between high- and low-risk scores in the non-radiotherapy group. Patients who received radiotherapy had a significantly better overall survival than non-radiotherapy patients in the predicted low-risk score patients. Furthermore, there was no difference between radiotherapy group and non-radiotherapy group in the high-risk score group. Those results firmly supported the prediction model of radiosensitivity. In addition, building a radiosensitivity prediction model was systematically discussed. Genes of model could be screened by different methods, such as Cox regression analysis, Lasso Cox regression method, random forest algorithm and other methods. In the future, precision radiotherapy might depend on the combination of multi-omics data and high dimensional image data.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3