Mechanistic and active-site studies on d(–)-mandelate dehydrogenase from Rhodotorula graminis

Author:

Baker D P1,Kleanthous C1,Keen J N2,Weinhold E3,Fewson C A1

Affiliation:

1. Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, U.K.

2. Protein Sequencing Unit, Department of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.

3. Laboratory for Organic Chemistry, Swiss Federal Institute of Technology, Zurich 8092, Switzerland

Abstract

D(–)-Mandelate dehydrogenase, the first enzyme of the mandelate pathway in the yeast Rhodotorula graminis, catalyses the NAD(+)-dependent oxidation of D(–)-mandelate to phenylglyoxylate. D(–)-2-(Bromoethanoyloxy)-2-phenylethanoic acid [‘D(–)-bromoacetylmandelic acid’], an analogue of the natural substrate, was synthesized as a probe for reactive and accessible nucleophilic groups within the active site of the enzyme. D(–)-Mandelate dehydrogenase was inactivated by D(–)-bromoacetylmandelate in a psuedo-first-order process. D(–)-Mandelate protected against inactivation, suggesting that the residue that reacts with the inhibitor is located at or near the active site. Complete inactivation of the enzyme resulted in the incorporation of approx. 1 mol of label/mol of enzyme subunit. D(–)-Mandelate dehydrogenase that had been inactivated with 14C-labelled D(–)-bromoacetylmandelate was digested with trypsin; there was substantial incorporation of 14C into two tryptic-digest peptides, and this was lowered in the presence of substrate. One of the tryptic peptides had the sequence Val-Xaa-Leu-Glu-Ile-Gly-Lys, with the residue at the second position being the site of radiolabel incorporation. The complete sequence of the second peptide was not determined, but it was probably an N-terminally extended version of the first peptide. High-voltage electrophoresis of the products of hydrolysis of modified protein showed that the major peak of radioactivity co-migrated with N tau-carboxymethylhistidine, indicating that a histidine residue at the active site of the enzyme is the most likely nucleophile with which D(–)-bromoacetylmandelate reacts. D(–)-Mandelate dehydrogenase was incubated with phenylglyoxylate and either (4S)-[4-3H]NADH or (4R)-[4-3H]NADH and then the resulting D(–)-mandelate and NAD+ were isolated. The enzyme transferred the pro-R-hydrogen atom from NADH during the reduction of phenylglyoxylate. The results are discussed with particular reference to the possibility that this enzyme evolved by the recruitment of a 2-hydroxy acid dehydrogenase from another metabolic pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3