A novel method for the delivery of nitric oxide therapy to the skin of human subjects using a semi-permeable membrane

Author:

HARDWICK J. B. J.1,TUCKER A. T.2,WILKS M.3,JOHNSTON A.1,BENJAMIN N.1

Affiliation:

1. Department of Clinical Pharmacology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, U.K.

2. The Ernest Cooke Clinical Microvascular Unit, St. Bartholomew's Hospital, London EC1A 7BE, U.K.

3. Department of Medical Microbiology, St. Bartholomew's Hospital, London EC1A 7BE, U.K.

Abstract

Nitric oxide (NO) is a mediator of essential biological processes, including vasodilatation, anti-microbial activity and wound healing. A chemical system using sodium nitrite and ascorbic acid has been developed which generates significant amounts of NO. The originally described system was messy and impractical, and the high acidity may cause pain and further tissue damage in ulcerated skin. To overcome this, a selectively permeable, hydrophilic polyester co-polymer membrane system (Sympatex™) has been identified that can be placed between the NO-generating chemicals and the skin. The aim of the present study was to determine whether NO derived from this chemical system was able to diffuse through the membrane and have a measurable vasodilatory effect on forearm skin in healthy volunteers. The Sympatex™ 10 μ m membrane was found to be highly permeable to NO, while preventing passage of the constituents of the NO-generation gel to the skin. The transmembrane NO-generation system had a vasodilatory effect comparable with that resulting from direct topical application. Additionally, the NO generated was effective in killing Staphylococcus aureus and Escherichia coli at doses lower than those required to increase skin blood flow. The vasodilatory and anti-microbial effects of this system may be useful as a patch-based topical therapy for skin ulceration, particularly when there is concomitant ischaemia and infection.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3