P63 modulates the expression of the WDFY2 gene which is implicated in cancer regulation and limb development

Author:

Monti Paola1,Ciribilli Yari2,Foggetti Giorgia1,Menichini Paola1ORCID,Bisio Alessandra2,Cappato Serena3,Inga Alberto2,Divizia Maria Teresa4,Lerone Margherita4,Bocciardi Renata34,Fronza Gilberto1ORCID

Affiliation:

1. Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi, 10, Genoa 16132, Italy

2. Department of Cellular, Computational and Integrative Biology (CIBio), University of Trento, Via Sommarive 9, Povo (TN) 38123, Italy

3. Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Largo P. Daneo, 3, Genoa 16132, Italy

4. Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, Genoa 16147, Italy

Abstract

Abstract TP63 is a member of the TP53 gene family, sharing a common gene structure that produces two groups of mRNAs’ encoding proteins with different N-terminal regions (ΔN and TA isoforms); both transcripts are also subjected to alternative splicing mechanisms at C-terminus, generating a variety of isoforms. p63 is a master regulator of epidermal development and homoeostasis as well as an important player in tumorigenesis and cancer progression with both oncogenic and tumour suppressive roles. A number of studies have aimed at the identification of p63 target genes, allowing the dissection of the molecular pathways orchestrated by the different isoforms. In the present study we investigated in more detail the p63 responsiveness of the WDFY2 (WD repeat and FYVE domain containing 2) gene, encoding for an endosomal protein identified as a binding partner of the PI-3K/AKT signalling pathway. We showed that overexpression of different p63 isoforms was able to induce WDFY2 expression in TP53-null cells. The p63-dependent transcriptional activation was associated with specific response elements (REs) that have been identified by a bioinformatics tool and validated by yeast- and mammal-based assays. Interestingly, to confirm that WDFY2 belongs to the p63 network of cancer regulation, we analysed the impact of WDFY2 alterations, by showing its frequent deletion in different types of tumours and suggesting its expression level as a prognostic biomarker. Lastly, we identified a chromosomal translocation involving the WDFY2 locus in a patient affected by a rare congenital limb anomaly, indicating WDFY2 as a possible susceptibility gene placed downstream p63 in the network of limb development.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3