Hydrolysis of three different head groups phospholipids by chicken group V phospholipase A2 using the monomolecular film technique

Author:

Karray Aida1ORCID,Ali Madiha Bou1,Raida Jallouli1,Sofiane Bezzine1

Affiliation:

1. Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d’Ingénieurs de Sfax, route de Soukra, Sfax 3038, Université de Sfax, Tunisia

Abstract

Abstract The kinetic aspects of lipolysis by pulmonary phospholipase A2 (ChPLA2-V), chicken intestinal phospholipase A2 (ChPLA2-IIA) and chicken pancreatic phospholipase A2 (ChPLA2-IB), from chicken have been compared using the monomolecular films technique, on short-chain phospholipids (with three different head groups) and on long-chain phospholipids. The main conclusions from our experimental data indicate that the maximum catalytic activities of ChPLA2-V on 1,2 phosphatidylcholine and 1,2 phosphatidylethanolamine reached 15.26 and 36.12 moles/cm2.min.mM, respectively, at a pressure of 15 and 35 dynes/cm, respectively. Whereas, those of ChPLA2-IB were 3.58 (at the pressure of 20 dynes/cm) and 4.9 moles/cm2.min.mM. However, hydrolysis of phosphatidylglycerol monolayers (C12PG), were very much higher compared with all the substrates tested with 122 moles/cm2.min. Surprisingly, the hydrolysis rate of ChPLA2-V on long-chain phosphatidylglycerol (C18PG) was very low (1.45 moles/cm2.min) compared with all tested substrates, even with the use of p-cyclodextrin. And thus, the fatty acid preference of ChPLA2-V was 2-decanoyl > 2-oleoyl with a PG head group. In order to gain significant correlations between enzyme’s structures and their relative functions, we tried to examine the surface electrostatic potentials of the various secreted phospholipase 2 (sPLA2) from chicken. In the present study, we detailed that the substrate affinity, specificity and the hydrolysis rates of sPLA2 at each interface is governed by the surface electrostatic potentials and hydrophobic interactions operative at this surface.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3