Regulation of integrin function: evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin α5β1

Author:

MOULD A. Paul1,GARRATT Alistair N.1,PUZON-McLAUGHLIN Wilma2,TAKADA Yoshikazu2,HUMPHRIES Martin J.1

Affiliation:

1. Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, U.K.

2. Department of Vascular Biology, Scripps Research Institute, La Jolla, CA 92037, U.S.A.

Abstract

The molecular mechanisms that regulate integrin–ligand binding are unknown; however, bivalent cations are essential for integrin activity. According to recent models of integrin tertiary structure, sites involved in ligand recognition are located on the upper face of the seven-bladed β-propeller formed by the N-terminal repeats of the α subunit and on the von Willebrand factor A-domain-like region of the β subunit. The epitopes of function-altering monoclonal antibodies (mAbs) cluster in these regions of the α and β subunits; hence these mAbs can be used as probes to detect changes in the exposure or shape of the ligand-binding sites. Bivalent cations were found to alter the apparent affinity of binding of the inhibitory anti-α5 mAbs JBS5 and 16, the inhibitory anti-β1 mAb 13, and the stimulatory anti-β1 mAb 12G10 to α5β1. Analysis of the binding of these mAbs to α5β1 over a range of Mn2+, Mg2+ or Ca2+ concentrations demonstrated that there was a concordance between the ability of cations to elicit conformational changes and the ligand-binding potential of α5β1. Competitive ELISA experiments provided evidence that the domains of the α5 and β1 subunits recognized by mAbs JBS5/16 and 13/12G10 are spatially close, and that the distance between these two domains is increased when α5β1 is occupied by bivalent cations. Taken together, our findings suggest that bivalent cations induce a conformational relaxation in the integrin that results in exposure of ligand-binding sites, and that these sites lie near an interface between the α subunit β-propeller and the β subunit putative A-domain.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3