Conserved tryptophan in cytochrome c: importance of the unique side-chain features of the indole moiety

Author:

BLACK Karen M.1,CLARK-LEWIS Ian2,WALLACE Carmichael J. A.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7

2. Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1W5

Abstract

The absolute conservation of tryptophan at position 59 in cytochrome c is related to the unique chemical nature of its indole moiety. The indole side chain of Trp-59 possesses three salient features: bulk, hydrophobicity and the ability of its indole nitrogen to act as a hydrogen-bond donor. Crystallographic evidence identifies the indole nitrogen of Trp-59 as having a stabilizing hydrogen-bonding interaction with the buried carboxylate group of haem propionate 7. Side-chain bulk is also likely to be important because a Phe or Leu residue can replace Trp to give an at least partly functional protein, whereas the smaller Gly or Ser cannot. Semisynthetic analogues were designed to test the importance of the side-chain features of tryptophan by using a recently developed method for stereoselective fragment religation in yeast cytochrome c. Three yeast iso-1 cytochrome c analogues were produced in which Trp-59 was replaced by a non-coded amino acid: p-iodophenylalanine, β-(3-pyridyl)-alanine or β-(2-naphthyl)-alanine. Replacement of Trp-59 with these non-coded amino acids allows the reasons for its conservation to be analysed, because they vary with respect to size, hydrophobicity and hydrogen-bond potential. Our results show that decreasing the bulk and hydrophobicity of the side chain at position 59 has a profound but different impact on physicochemical and biological parameters from those of abolishing hydrogen-bond donor potential. This suggests that Trp-59 has both a local and a global stability effect by solvating a buried charge and by having a key role in the packing of the cytochrome c hydrophobic core.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3