Author:
Binet A,Berthon B,Claret M
Abstract
The action of alpha 1-adrenergic agonists (noradrenaline in the presence of propranolol), vasopressin and angiotensin on the intracellular free Ca2+ concentration, [Ca2+]i, was determined by using the fluorescent dye quin2 in isolated rat liver cells. In the presence of external Ca2+ (1.8 mM), 1 microM-noradrenaline induced an increase in [Ca2+]i up to about 800 nM without apparent delay, whereas 10 nM-vasopressin and 1 nM-angiotensin increased [Ca2+]i to values higher than 1500 nM with a lag period of about 6s. The successive addition of the hormones and of their specific antagonists indicated that the actions of the three Ca2+-mobilizing hormones occurred without apparent desensitization (over 6 min) and via independent receptors. The relative contributions of internal and external Ca2+ pools to the cell response were determined by studying the hormone-mediated [Ca2+]i increase and glycogen phosphorylase activation in low-Ca2+ media (22 microM). In this medium: (1) [Ca2+]i was lowered and the hormones initiated a transient instead of a sustained increase in [Ca2+]i; subsequent addition (2 min) of a second hormone promoted a lesser increase in [Ca2+]i; in contrast, the subsequent addition (2 min) of Ca2+ (1.8 mM) caused [Ca2+]i to increase to a value close to that initiated by the hormone in control conditions, the amplitude of the latter response being dependent on the concentration of Ca2+ added to the medium; (2) returning to normal Ca2+ (1.8 mM) restored the resting [Ca2+]i and allowed the hormone added 2 min later to promote a large increase in [Ca2+]i whose final amplitude was also dependent on the concentration of Ca2+ added beforehand. Similar results were found when the same protocol was applied to the glycogen phosphorylase activation. It is concluded that Ca2+ influx is required for a maximal and sustained response and to reload the hormone-sensitive stores.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献