Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid–liquid phase separation

Author:

Wu Si12ORCID,Wen Jitao12ORCID,Perrett Sarah12ORCID

Affiliation:

1. 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China

2. 2University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China

Abstract

Abstract Biomolecular condensate formation via liquid–liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the spatiotemporal organization of biomolecules in the cell. These membraneless condensates form and disperse dynamically in response to environmental stimuli. Growing evidence indicates that the liquid-like condensates not only play functional physiological roles but are also implicated in a wide range of human diseases. As a major component of biomolecular condensates, intrinsically disordered proteins (IDPs) are intimately involved in the LLPS process. During the last decade, great efforts have been made on the macroscopic characterization of the physicochemical properties and biological functions of liquid condensates both in vitro and in the cellular context. However, characterization of the conformations and interactions at the molecular level within phase-separated condensates is still at an early stage. In the present review, we summarize recent biophysical studies investigating the intramolecular conformational changes of IDPs upon LLPS and the intermolecular clustering of proteins undergoing LLPS, with a particular focus on single-molecule fluorescence detection. We also discuss how these microscopic features are linked to the macroscopic phase transitions that are relevant to the physiological and pathological roles of the condensates.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3