Revisiting the role of electron donors in lytic polysaccharide monooxygenase biochemistry

Author:

Hemsworth Glyn R.1ORCID

Affiliation:

1. Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.

Abstract

Abstract The plant cell wall is rich in carbohydrates and many fungi and bacteria have evolved to take advantage of this carbon source. These carbohydrates are largely locked away in polysaccharides and so these organisms deploy a range of enzymes that can liberate individual sugars from these challenging substrates. Glycoside hydrolases (GHs) are the enzymes that are largely responsible for bringing about this sugar release; however, 12 years ago, a family of enzymes known as lytic polysaccharide monooxygenases (LPMOs) were also shown to be of key importance in this process. LPMOs are copper-dependent oxidative enzymes that can introduce chain breaks within polysaccharide chains. Initial work demonstrated that they could activate O2 to attack the substrate through a reaction that most likely required multiple electrons to be delivered to the enzyme. More recently, it has emerged that LPMO kinetics are significantly improved if H2O2 is supplied to the enzyme as a cosubstrate instead of O2. Only a single electron is required to activate an LPMO and H2O2 cosubstrate and the enzyme has been shown to catalyse multiple turnovers following the initial one-electron reduction of the copper, which is not possible if O2 is used. This has led to further studies of the roles of the electron donor in LPMO biochemistry, and this review aims to highlight recent findings in this area and consider how ongoing research could impact our understanding of the interplay between redox processes in nature.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3