Affiliation:
1. 1Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
2. 2ICREA, 08010 Barcelona, Spain
Abstract
AbstractAstrocytes generate ATP through glycolysis and mitochondrion respiration, using glucose, lactate, fatty acids, amino acids, and ketone bodies as metabolic fuels. Astrocytic mitochondria also participate in neuronal redox homeostasis and neurotransmitter recycling. In this essay, we aim to integrate the multifaceted evidence about astrocyte bioenergetics at the cellular and systems levels, with a focus on mitochondrial oxidation. At the cellular level, the use of fatty acid β-oxidation and the existence of molecular switches for the selection of metabolic mode and fuels are examined. At the systems level, we discuss energy audits of astrocytes and how astrocytic Ca2+ signaling might contribute to the higher performance and lower energy consumption of the brain as compared to engineered circuits. We finish by examining the neural-circuit dysregulation and behavior impairment associated with alterations of astrocytic mitochondria. We conclude that astrocytes may contribute to brain energy efficiency by coupling energy, redox, and computational homeostasis in neural circuits.
Subject
Molecular Biology,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献