Gut bacterial alginate degrading enzymes

Author:

Rønne Mette E.1,Madsen Mikkel1,Tandrup Tobias1,Wilkens Casper2,Svensson Birte1ORCID

Affiliation:

1. 1Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark

2. 2Structural Enzymology and Biorefineries, Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark

Abstract

AbstractAlginates are abundant marine anionic polysaccharides consumed by humans. Thus, over the years some understanding has emerged about alginate utilization by human gut microbiota (HGM). However, insights have been obtained only recently at the molecular level with regard to structure and function of alginate degrading and metabolizing enzymes from HGM. Still, numerous studies report on effects of alginates on bacterial communities from digestive tracts of various, predominantly marine organisms feeding on alginate and some of the involved alginate lyases have been characterized. Other studies describe the beneficial impact on gut microbiota elicited by alginates in animal models, for example, high-fat-diet-fed mice addressing obesity or as feed supplements for livestock. Alginates are depolymerized by a β-elimination reaction catalyzed by polysaccharide lyases (PLs) referred to as alginate lyases (ALs). The ALs are found in 15 of the 42 PL families categorized in the CAZy database. While genome mining has led to prediction of ALs encoded by bacteria of the HGM; currently, only four enzymes from this niche have been characterized biochemically and two crystal structures are reported. Alginates are composed of mannuronate (M) and guluronate (G) residues organized in M-, G-, and MG-blocks, which calls for ALs of complementary specificity to effectively depolymerize alginate to alginate oligosaccharides (AOSs) and monosaccharides. Typically, ALs of different PL families are encoded by genes arranged in clusters denoted as polysaccharide utilization loci. Currently, biochemical and structural analyses of marine bacterial ALs contribute to depicting the mode of action of predicted enzymes from bacteria of the HGM.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3