Inhibition of autophagic proteolysis by inhibitors of phosphoinositide 3-kinase can interfere with the regulation of glycogen synthesis in isolated hepatocytes

Author:

DUBBELHUIS Peter F.1,SLUIJTERS Daphne A. VAN1,BLOMMAART Edward F.C.1,GUSTAFSON Lori A.1,WOERKOM George M. VAN1,HERLING Andreas W.2,BURGER Hans-Joerg2,MEIJER Alfred J.1

Affiliation:

1. Department of Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands,

2. AVENTIS Pharma Deutschland G.m.b.h., Frankfurt-am-Main, Germany

Abstract

Amino acid-induced cell swelling stimulates conversion of glucose into glycogen in isolated hepatocytes. Activation of glycogen synthase (GS) phosphatase, caused by the fall in intracellular chloride accompanying regulatory volume decrease, and activation of phosphoinositide 3-kinase (PI 3-kinase), induced by cell swelling, have been proposed as underlying mechanisms. Because PI 3-kinase controls autophagic proteolysis, we examined the possibility that PI 3-kinase inhibitors interfere with glycogen production due to their anti-proteolytic action. The PI 3-kinase inhibitor wortmannin inhibited endogenous proteolysis, the production of glycogen from glucose and the activity of active (dephosphorylated) GS (GSa) in the absence of added amino acids. The stimulation by amino acids of glycogen production and of GSa was only slightly affected by wortmannin. These effects of wortmannin could be mimicked by proteinase inhibitors. A combination of leucine, phenylalanine and tyrosine, which we showed previously to stimulate PI 3-kinase-dependent phosphorylation of ribosomal protein S6, did not stimulate glycogen production from glucose. In contrast with wortmannin, LY294002, another PI 3-kinase inhibitor, strongly inhibited both glycogen synthesis and GSa activity, irrespective of the presence of amino acids. Inhibition of glycogen synthesis by LY294002 could be ascribed in part to increased glycogenolysis and glycolysis. It is concluded that, in hepatocytes, activation of PI 3-kinase may not be responsible for the stimulation of glycogen synthesis by amino acids; LY294002 inhibits glycogen synthesis and stimulates glycogen breakdown by a mechanism that is unrelated to its action as an inhibitor of PI 3-kinase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MicroRNA-145 repairs infarcted myocardium by accelerating cardiomyocyte autophagy;American Journal of Physiology-Heart and Circulatory Physiology;2015-12-01

2. Glycogen autophagy;Microscopy Research and Technique;2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3