Affiliation:
1. Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, U.K.
Abstract
Recent studies have suggested that glucose may activate insulin gene transcription through increases in intracellular Ca2+ concentration, possibly acting via the release of stored insulin. We have investigated this question by dynamic photon-counting imaging of insulin- and c-fos-promoter-firefly luciferase reporter construct activity. Normalized to constitutive viral promoter activity, insulin promoter activity in MIN6 β-cells was increased 1.6-fold after incubation at 30 mM compared with 3 mM glucose, but was unaltered at either glucose concentration by the presence of insulin (100 nM) or the Ca2+ channel inhibitor, verapamil (100 μM). Increases in intracellular [Ca2+] achieved by plasma membrane depolarization with KCl failed to enhance either insulin or c-fos promoter activity in MIN6 cells, but increased c-fos promoter activity 5-fold in AtT20 cells. Together, these results demonstrate that glucose can exert a direct effect on insulin promoter activity in islet β-cells, via a signalling pathway which does not require increases in intracellular [Ca2+] nor insulin release and insulin receptor activation.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献