Studies on the activation by ATP of the 26 S proteasome complex from rat skeletal muscle

Author:

Dahlmann B1,Kuehn L1,Reinauer H1

Affiliation:

1. Diabetes Forschungsinstitut, Auf'm Hennekamp 65, D-40225 Dusseldorf, Germany

Abstract

The 26 S proteasome complex is thought to catalyse the breakdown of ubiquitinated proteins within eukaryotic cells. In addition it has been found that the complex also degrades short-lived proteins such as ornithine decarboxylase in a ubiquitin-independent manner. Both proteolytic processes are paralleled by the hydrolysis of ATP. Here we show that ATP also affects the hydrolytic activity towards fluorigenic peptide substrates by the 26 S proteasome complex from rat skeletal muscle tissue. Low concentrations of ATP (about 25 microM) optimally activate the so-called chymotryptic and tryptic activity by increasing the rate of peptide hydrolysis but not peptidylglutamylpeptide hydrolysis. Activation of the enzyme by ATP is transient but this effect can be enhanced and prolonged by including in the assay an ATP-regenerating system, indicating that ATP is hydrolysed by the 26 S proteasome complex. Although ATP cannot be substituted for by adenosine 5′-[beta,gamma-methylene]triphosphate or AMP, hydrolysis of the phosphoanhydride bond of ATP seems not to be necessary for the activation process of the proteasome complex, a conclusion drawn from the findings that ATP analogues such as adenosine 5′-[beta,gamma-imido]triphosphate, adenosine 5′-O-[gamma-thio]triphosphate, adenosine 5′-O-[beta-thio]-diphosphate and adenosine 5′-[alpha,beta-methylene]triphosphate give the same effect as ATP, and vanadate does not prevent ATP activation. These effects are independent of the presence of Mg2+. Thus, ATP and other nucleotides may act as allosteric activators of peptide-hydrolysing activities of the 26 S proteasome complex as has also been found with the lon protease from Escherichia coli.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3