Affiliation:
1. Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
2. Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, U.S.A.
Abstract
The present paper described interactions of urinary-type plasminogen activator (u-PA) with isolated protein components of the extracellular matrix (ECM) using kinetic and ligand-blotting analyses, as well as adhesion studies with u-PA-saturated U937 monocytic cells. Kinetic analyses showed that fibronectin and laminin were moderately effective at decreasing activation of plasminogen by u-PA (3-4-fold decrease in kcat/Km), while activation was stimulated slightly by collagen types I and IV (2-4-fold increase in kcat/Km). Ligand-blotting experiments using intact immobilized ECM proteins demonstrated that u-PA binds predominantly to vitronectin. This was supported by ELISA studies, which showed concentration dependent, saturable, reversible binding of u-PA to vitronectin (Kd,app. of 97 nM). Limited proteolysis of vitronectin followed by ligand-blotting analysis demonstrated u-PA binding to a specific vitronectin fragment (M(r) 49,000), and binding was shown to occur through the N-terminal fragment of u-PA. N-terminal sequence analysis indicated that this binding fragment of vitronectin originates with Thr-122 and comprises the hemopexin domain, including the heparin-binding region of the vitronectin molecule. Plasminogen activator inhibitor type I did not compete with u-PA for binding to vitronectin, suggesting both molecules may co-localize on vitronectin. In contrast, binding of u-PA to vitronectin was significantly inhibited by plasminogen, suggesting these molecules share a common binding site on vitronectin. In addition to in vitro studies, experiments were performed to assess the contribution of direct binding of u-PA to vitronectin on the adhesive behaviour of U937 cells. Binding of u-PA-saturated U937 cells to vitronectin was inhibited 66% by excess vitronectin, suggesting that direct binding of u-PA to vitronectin is the mechanism by which u-PA-dependent adhesion of U937 cells to vitronectin is mediated.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献