Characterization of link protein(s) from human intervertebral-disc tissues

Author:

Donohue P J1,Jahnke M R1,Blaha J D1,Caterson B1

Affiliation:

1. Departments of Biochemistry and Orthopedic Surgery, West Virginia University Medical Center, Morgantown, WV 26506, U.S.A.

Abstract

Proteoglycan aggregates (A1) were prepared from the anulus fibrosus, nucleus pulposus and cartilage-endplate tissues of postnatal (0-6-month-old)-and young-adult (20-30-year-old)-human intervertebral discs. The A1 fractions from young-adult disc contained a greater proportion of non-aggregating proteoglycans than did postnatal tissues. After dissociative CsCl-density-gradient fractionation of the A1, more than 90% of the uronic acid was found in the postnatal A1D1, whereas only 60-80% of the hexuronate was present in the A1D1 isolated from young-adult disc tissues. These results indicated that more lower-buoyant-density proteoglycans occur in the young-adult disc. Link-protein-rich fractions (A1D3) were subjected to SDS/polyacrylamide-gel electrophoresis and immunolocation analyses using monoclonal antibodies specific for epitopes on link protein or proteoglycan. Under non-reducing conditions, the major link protein present in postnatal disc tissues was link protein 1. By contrast, all three link proteins (1, 2 and 3) were detected in young-adult tissues, with the smaller link protein 3 predominating. Analyses of the A1D3 fractions under reducing conditions also indicated the presence of link-protein-degradation peptides (Mr approx. 26,000) from young-adult disc tissues, but not from postnatal tissues. Sequential Sepharose CL-6B and Sephacryl S-300 chromatography in 4 M-guanidinium chloride was employed to separate the link proteins of the A1D3 fraction from protein-rich proteoglycan. Immunolocation analyses indicated that postnatal samples contained no detectable contaminating proteoglycan fragments. However, young-adult link-protein preparations could not be separated from hyaluronic acid-binding region and other proteoglycan fragments by means of these chromatographic procedures. The studies indicate that, compared with hyaline articular cartilage, degraded link protein and proteoglycan accumulate at an early age in young-adult disc tissues. These partially degraded proteoglycan aggregate components may significantly alter the biomechanical properties of disc tissues.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3