Interaction of di-iodinated 125I-labelled α-bungarotoxin and reversible cholinergic ligands with intact synaptic acetylcholine receptors on isolated skeletal-muscle fibres from the rat

Author:

Darveniza P,Morgan-Hughes J A,Thompson E J

Abstract

1. Intact synaptic acetylcholine receptors on freshly isolated rat skeletal-muscle fibres were characterized by their interaction with di-iodinated 125I-labelled alpha-bungarotoxin, acetylcholine and other cholinergic ligands at room temperature (22 deggrees C). 2. The time course and concentration dependence of 125I-labelled alpha-bungarotoxin association conformed to a bimolecular mechanism. In time-course experiments with different concentrations of 125I-labelled alpha-bungarotoxin (1.4–200 nM) the bimolecular-association rate constant, k + 1, was (2.27 +/- 0.49) × 10(4)M-1.S-1 (mean +/- S.D., N = 10). In concentration-dependence experiments, k + 1 was 2.10 × 10(4)M-1.S-1 and 1.74 × 10(4) M-1.S-1 with 10 and 135 min incubations respectively. In association experiments the first-order rate constant was proportional to the 125I-labelled alpha-bungarotoxin concentration. 125I-Labelled alpha-bungarotoxin dissociation was first order with a dissociation constant, k-1, less than or equal to 3 × 10(-6)S(-1) (half-life greater than or equal to 60 h.) The results indicated a single class of high-affinity toxin-binding sites at the end-plate with an equilibrium dissociation constant, Kd, equal to or less than 100 pM. The number of toxin-binding sites was (3.62 +/- 0.46) × 10(7) (mean +/- S.D., n = 22) per rat end-plate. 3. The apparent inhibitor dissociation constants, Ki, for reversible cholinergic ligands were determined by studying their effect at equilibrium on the rate of 125I-labelled alpha-bungarotoxin binding. There was heterogeneity of binding sites for cholinergic ligands, which were independent and non-interacting with antagonists. In contrast agonist affinity decreased with increasing receptor occupancy. Cholinergic ligands in excess inhibited over 90% of 125I-labelled alpha-bungarotoxin binding. 4. Cholinergic ligand binding was accompanied by an increase in entropy, which was greater for the agonist carbachol (delta So = +0.46 kJ.mol-1.K-1) than the antagonist tubocurarine (delta So = +0.26 kJ.mol-1.K-1). 5. The entropy and affinity changes that accompanied agonist binding suggested that agonists induced significant conformational changes in intact acetylcholine receptors. 6. The affinity and specificity of 125I-labelled alpha-bungarotoxin and tubocurarine binding to synaptic acetylcholine receptors from slow and fast muscle fibres were the same. 7. The study of binding only requires milligram amounts of tissue and may have application to other neurobiological studies and to the study of human neuromuscular disorders.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3