Activation of TrkA by nerve growth factor upregulates expression of the cholinergic gene locus but attenuates the response to ciliary neurotrophic growth factor

Author:

BERSE Brygida1,LOPEZ-COVIELLA Ignacio2,BLUSZTAJN J. Krzysztof12

Affiliation:

1. Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 85 East Newton Street, Boston, MA 02118, U.S.A.

2. Department of Psychiatry, Boston University School of Medicine, 85 East Newton Street, Boston, MA 02118, U.S.A.

Abstract

Nerve growth factor (NGF) stimulates the expression of the cholinergic gene locus, which encodes choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), the proteins necessary for the synthesis and storage of the neurotransmitter acetylcholine (ACh). To determine whether this action of NGF is mediated by the p140TrkA NGF receptor (a member of the Trk tyrosine kinase family) we used a murine basal forebrain cholinergic cell line, SN56, stably transfected with rat trkA cDNA. Treatment of these transfectants with NGF activated mitogen-activated protein kinase and increased cytosolic free calcium concentrations, confirming the reconstitution of TrkA-mediated signalling pathways. The expression of ChAT and VAChT mRNA, as well as ACh content, were coordinately up-regulated by NGF in SN56-trkA transfectants. None of these responses occurred in the parental SN56 cells, which do not express endogenous TrkA, indicating that these actions of NGF required TrkA. We previously reported that ciliary neurotrophic factor (CNTF) upregulates the expression of ChAT and VAChT, as well as ACh production, in SN56 cells. The combined treatment of SN56-trkA cells with CNTF and NGF revealed a complex interaction of these factors in the regulation of cholinergic gene locus expression. At low concentrations of CNTF (< 1 ng/ml), the upregulation of ACh synthesis evoked by these factors was additive. However, at higher concentrations of CNTF (> 1 ng/ml), NGF attenuated the stimulatory effect of CNTF on ChAT and VAChT mRNA and ACh content. This attenuation was not due to interference with early steps of CNTF receptor signalling, as pre-treatment of SN56-trkA cells with NGF did not affect the nuclear translocation of the transcription factor, Stat3, evoked by CNTF.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3