Purification of the hexokinases by affinity chromatography on sepharose-N-aminoacylglucosamine derivates. Design of affinity matrices from free solution kinetics

Author:

Wright C L,Warsy A S,Holroyde M J,Trayer I P

Abstract

The purification is described of rat hepatic hexokinase type III and kidney hexokinase type I on a large scale by using a combination of conventional and affinity techniques similar to those previously used for the purification of rat hepatic glucokinase [Holroyde, Allen, Storer, Warsy, Chesher, Trayer, Cornish-Bowden & Walker (1976) Biochem. J. 153, 363-373] and muscle hexokinase type II [Holroyde & Trayer (1976) FEBS Lett. 62, 215-219]. The key to each purification was the use of a Sepharose-N-aminoacylglucosamine affinity matrix in which a high degree of specificity for a particular hexokinase isoenzyme could be introduced by either varying the length of the aminoacyl spacer and/or varying the ligand concentration coupled to the gel. This was predicted from a study of the free solution kinetic properties of the various N-aminoacylglucosamine derivatives used (N-aminopropionyl, N-aminobutyryl, N-aminohexanoyl and N-aminooctanoyl), synthesized as described by Holroyde, Chesher, Trayer & Walker [(1976) Biochem. J. 153, 351-361]. All derivatives were competitive inhibitors, with respect to glucose, of the hexokinase reaction, and there was a direct correlation between the Ki for a particular derivative and its ability to act as an affinity matrix when immobilized to CNBr-activated Sepharose 4B. Muscle hexokinase type II could be chromatographed on the Sepharose conjugates of all four N-aminoacylglucosamine derivatives, although the N-aminohexanoylglucosamine derivative proved best. This same derivative was readily able to bind hepatic glucokinase and hexokinase type III, but Sepharose-N-amino-octanoyl-glucosamine was better for these enzymes and was the only derivative capable of binding kidney hexokinase type I efficiently. Separate studies with yeast hexokinase showed that again only the Sepharose-N-amino-octanoylglucosamine was capable of acting as an efficient affinity matrix for this enzyme. Implications of these studies in our understanding of affinity-chromatography operation are discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3