The sleeping beauty kissed awake: new methods in electron microscopy to study cellular membranes

Author:

Chlanda Petr1,Krijnse Locker Jacomine2

Affiliation:

1. Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, U.S.A.

2. Ultrapole, Ultra-Structural Bio-Imaging, Institut Pasteur, 28, rue du Dr. Roux, Paris 75015, France

Abstract

Electron microscopy (EM) for biological samples, developed in the 1940–1950s, changed our conception about the architecture of eukaryotic cells. It was followed by a period where EM applied to cell biology had seemingly fallen asleep, even though new methods with important implications for modern EM were developed. Among these was the discovery that samples can be preserved by chemical fixation and most importantly by rapid freezing without the formation of crystalline ice, giving birth to the world of cryo-EM. The past 15–20 years are hallmarked by a tremendous interest in EM, driven by important technological advances. Cryo-EM, in particular, is now capable of revealing structures of proteins at a near-atomic resolution owing to improved sample preparation methods, microscopes and cameras. In this review, we focus on the challenges associated with the imaging of membranes by EM and give examples from the field of host–pathogen interactions, in particular of virus-infected cells. Despite the advantages of imaging membranes under native conditions in cryo-EM, conventional EM will remain an important complementary method, in particular if large volumes need to be imaged.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methods for Molecular Imaging, Detection and Visualization of CPPs;CPP, Cell-Penetrating Peptides;2023

2. Notes and References;Principles of Electron Optics, Volume 3;2022

3. Methods for Detection and Visualization of CPPs;CPP, Cell-Penetrating Peptides;2019

4. Prediction of Protein-Protein Interactions: Looking Through the Kaleidoscope;Encyclopedia of Bioinformatics and Computational Biology;2019

5. Methodologies to investigate intracellular barriers for nucleic acid delivery in non-viral gene therapy;Nano Today;2018-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3