Two insulin-like peptides differentially regulate malaria parasite infection in the mosquito through effects on intermediary metabolism

Author:

Pietri Jose E.1,Pakpour Nazzy1,Napoli Eleonora2,Song Gyu2,Pietri Eduardo1,Potts Rashaun1,Cheung Kong W.1,Walker Gregory1,Riehle Michael A.3,Starcevich Hannah1,Giulivi Cecilia24,Lewis Edwin E.5,Luckhart Shirley1

Affiliation:

1. Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, U.S.A.

2. Department of Molecular Biosciences, University of California Davis, Davis, CA, U.S.A.

3. Department of Entomology, University of Arizona, Tucson, AZ, U.S.A.

4. Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, Sacramento, CA, U.S.A.

5. Department of Entomology and Nematology, University of California, Davis, CA, U.S.A.

Abstract

Insulin-like peptides (ILPs) play important roles in growth and metabolic homeostasis, but have also emerged as key regulators of stress responses and immunity in a variety of vertebrates and invertebrates. Furthermore, a growing literature suggests that insulin signaling-dependent metabolic provisioning can influence host responses to infection and affect infection outcomes. In line with these studies, we previously showed that knockdown of either of two closely related, infection-induced ILPs, ILP3 and ILP4, in the mosquito Anopheles stephensi decreased infection with the human malaria parasite Plasmodium falciparum through kinetically distinct effects on parasite death. However, the precise mechanisms by which ILP3 and ILP4 control the response to infection remained unknown. To address this knowledge gap, we used a complementary approach of direct ILP supplementation into the blood meal to further define ILP-specific effects on mosquito biology and parasite infection. Notably, we observed that feeding resulted in differential effects of ILP3 and ILP4 on blood-feeding behavior and P. falciparum development. These effects depended on ILP-specific regulation of intermediary metabolism in the mosquito midgut, suggesting a major contribution of ILP-dependent metabolic shifts to the regulation of infection resistance and parasite transmission. Accordingly, our data implicate endogenous ILP signaling in balancing intermediary metabolism for the host response to infection, affirming this emerging tenet in host–pathogen interactions with novel insights from a system of significant public health importance.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3