Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the ‘retro’ approach to protein engineering

Author:

Gumulya Yosephine1,Gillam Elizabeth M.J.1

Affiliation:

1. School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia

Abstract

A central goal in molecular evolution is to understand the ways in which genes and proteins evolve in response to changing environments. In the absence of intact DNA from fossils, ancestral sequence reconstruction (ASR) can be used to infer the evolutionary precursors of extant proteins. To date, ancestral proteins belonging to eubacteria, archaea, yeast and vertebrates have been inferred that have been hypothesized to date from between several million to over 3 billion years ago. ASR has yielded insights into the early history of life on Earth and the evolution of proteins and macromolecular complexes. Recently, however, ASR has developed from a tool for testing hypotheses about protein evolution to a useful means for designing novel proteins. The strength of this approach lies in the ability to infer ancestral sequences encoding proteins that have desirable properties compared with contemporary forms, particularly thermostability and broad substrate range, making them good starting points for laboratory evolution. Developments in technologies for DNA sequencing and synthesis and computational phylogenetic analysis have led to an escalation in the number of ancient proteins resurrected in the last decade and greatly facilitated the use of ASR in the burgeoning field of synthetic biology. However, the primary challenge of ASR remains in accurately inferring ancestral states, despite the uncertainty arising from evolutionary models, incomplete sequences and limited phylogenetic trees. This review will focus, firstly, on the use of ASR to uncover links between sequence and phenotype and, secondly, on the practical application of ASR in protein engineering.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3