Engineered Cx26 variants established functional heterotypic Cx26/Cx43 and Cx26/Cx40 gap junction channels

Author:

Karademir Levent B.1,Aoyama Hiroshi2,Yue Benny1,Chen Honghong1,Bai Donglin1

Affiliation:

1. Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1

2. Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan

Abstract

Gap junction (GJ) channels mediate direct intercellular communication and are composed of two docked hemichannels (connexin oligomers). It is well documented that the docking and formation of GJs are possible only between compatible hemichannels (or connexins). The mechanisms of heterotypic docking compatibility are not fully clear. We aligned the protein sequences of docking-compatible and -incompatible connexins with that of connexin26 (Cx26). We found that two docking hydrogen bond (HB)-forming residues on the second extracellular domain (E2) of Cx26 and their equivalent residues are well conserved within docking-compatible connexins, but different between docking-incompatible connexins. Replacing one or both of these residues of Cx26 into the corresponding residues in the docking incompatible connexins (K168V, N176H or K168V-N176H) increased the formation of morphological and functional heterotypic GJs with connexin43 (Cx43) or connexin40 (Cx40), indicating that these two residues are important for docking incompatibility between Cx26 and these connexins. Our homology structure models predict that both HBs and hydrophobic interactions at the E2 docking interface are important docking mechanisms in heterotypic Cx26 K168V-N176H/Cx43 GJs and probably other docking compatible connexins. Revealing the key residues and mechanisms of heterotypic docking compatibility will assist us in understanding why these putative docking residues are hotspots of disease-linked mutants.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3