Disulphide bond restrains the C-terminal region of thermostable direct hemolysin during folding to promote oligomerization

Author:

Kundu Nidhi1,Tichkule Swapnil1,Pandit Shashi Bhushan1,Chattopadhyay Kausik1

Affiliation:

1. Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India

Abstract

Pore-forming toxins (PFTs) are typically produced as water-soluble monomers, which upon interacting with target cells assemble into transmembrane oligomeric pores. Vibrio parahaemolyticus thermostable direct hemolysin (TDH) is an atypical PFT that exists as a tetramer in solution, prior to membrane binding. The TDH structure highlights a core β-sandwich domain similar to those found in the eukaryotic actinoporin family of PFTs. However, the TDH structure harbors an extended C-terminal region (CTR) that is not documented in the actinoporins. This CTR remains tethered to the β-sandwich domain through an intra-molecular disulphide bond. Part of the CTR is positioned at the inter-protomer interface in the TDH tetramer. Here we show that the truncation, as well as mutation, of the CTR compromise tetrameric assembly, and the membrane-damaging activity of TDH. Our study also reveals that intra-protomer disulphide bond formation during the folding/assembly process of TDH restrains the CTR to mediate its participation in the formation of inter-protomer contact, thus facilitating TDH oligomerization. However, once tetramerization is achieved, disruption of the disulphide bond does not affect oligomeric assembly. Our study provides critical insights regarding the regulation of the oligomerization mechanism of TDH, which has not been previously documented in the PFT family.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference28 articles.

1. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques;Letchumanan;Front. Microbiol.,2014

2. The pathogenesis, detection and prevention of Vibrio parahaemolyticus;Wang;Front. Microbiol.,2015

3. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus;Raghunath;Front. Microbiol,2014

4. Demonstration of the cardiotoxicity of the thermostable direct hemolysin (lethal toxin) produced by Vibrio parahaemolyticus;Honda;Infect. Immun.,1976

5. Interaction of thermostable direct hemolysin of Vibrio parahaemolyticus with human erythrocytes;Sakurai;Biken. J.,1975

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3