Structural organization of signalling to and from IP3 receptors

Author:

Taylor Colin W.1,Tovey Stephen C.1,Rossi Ana M.1,Lopez Sanjurjo Cristina I.1,Prole David L.1,Rahman Taufiq1

Affiliation:

1. Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.

Abstract

In the 30 years since IP3 (inositol 1,4,5-trisphosphate) was first shown to release Ca2+ from intracellular stores, the importance of spatially organized interactions within IP3-regulated signalling pathways has been universally recognized. Recent evidence that addresses three different levels of the structural determinants of IP3-evoked Ca2+ signalling is described in the present review. High-resolution structures of the N-terminal region of the IP3R (IP3 receptor) have established that the two essential phosphate groups of IP3 bind to opposite sides of the IP3-binding site, pulling its two domains together. This conformational change is proposed to disrupt an interaction between adjacent subunits within the tetrameric IP3R that normally holds the channel in a closed state. Similar structural changes are thought to allow gating of ryanodine receptors. cAMP increases the sensitivity of IP3Rs and thereby potentiates the Ca2+ signals evoked by receptors that stimulate IP3 formation. We speculate that both IP3 and cAMP are delivered to IP3Rs within signalling junctions, wherein the associated IP3Rs are exposed to a saturating concentration of either messenger. The concentration-dependent effects of extracellular stimuli come from recruitment of junctions rather than from a graded increase in the activity of individual junctions. IP3Rs within ‘IP3 junctions’ respond directly to receptors that stimulate phospholipase C, whereas extra-junctional IP3Rs are exposed to suboptimal concentrations of IP3 and open only when they are sensitized by cAMP. These results highlight the importance of selective delivery of diffusible messengers to IP3Rs. The spatial organization of IP3Rs also allows them to direct Ca2+ to specific intracellular targets that include other IP3Rs, mitochondria and Ca2+-regulated channels and enzymes. IP3Rs also interact functionally with lysosomes because Ca2+ released by IP3Rs, but not that entering cells via store-operated Ca2+ entry pathways, is selectively accumulated by lysosomes. This Ca2+ uptake shapes the Ca2+ signals evoked by IP3 and it may regulate lysosomal behaviour.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3