Carbachol and histamine stimulation of guanine-nucleotide-dependent phosphoinositide hydrolysis in rat brain cortical membranes

Author:

Claro E1,Garcia A1,Picatoste F1

Affiliation:

1. Instituto de Biología Fundamental “V. Villar Palasí” and Departamento de Bioquimíca y Biología Molecular, Universidad Autónoma de Barcelona, 08193-Bellaterra, Barcelona, Spain.

Abstract

Guanine nucleotides have been shown to stimulate phosphoinositide breakdown in brain membranes, but no potentiation of such an effect by agonist was demonstrated. We have studied the effect of carbachol and histamine on guanosine 5′-[gamma-thio]triphosphate (GTP[S]) stimulation of inositol phosphates formation in [3H]inositol-labelled rat brain cortical membranes. In this preparation, GTP[S] enhancement of phosphoinositide hydrolysis required the presence of MgATP and low Ca2+ concentration (100 nM). Carbachol potentiation of the GTP[S] effect was only observed when 1 mM-deoxycholate was also added. Under these conditions, stimulated production of [3H]inositol phosphates was linear for at least 15 min, and [3H]inositol bisphosphate [(3H]IP2) accounted for approx. 80%, whereas the amount of [3H]inositol trisphosphate [(3H]IP3) was very low. Stimulation by GTP[S] was concentration-dependent (half-maximal effect at 0.86 microM), and its maximal effect (815% over basal) was increased by 1 mM-carbachol (1.9-fold) and -histamine (1.7-fold). Both agonists decreased the slope index of the GTP[S] concentration/effect curve to values lower than unity, suggesting the appearance of some heterogeneity in the population of guanine-nucleotide-binding proteins (G-proteins) involved. The carbachol and histamine effects were also concentration-dependent, and were inhibited by atropine and mepyramine respectively. Fluoroaluminate stimulated phosphoinositide hydrolysis to a higher extent than GTP[S] plus carbachol, and these stimulations were not additive, indicating that the same polyphosphoinositide phospholipase C-coupled G-protein mediates both effects.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3