Glutamine metabolism in skeletal muscles from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus)

Author:

Wu G1,Thompson J R1,Baracos V E1

Affiliation:

1. Department of Animal Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5

Abstract

Oxidative decarboxylation of L-[1-14C]glutamine was studied in isolated chick and rat skeletal muscles incubated in the presence of glucose, insulin and plasma concentrations of amino acids. (1) The rate of oxidative decarboxylation of L-[1-14C]glutamine was high, and exceeded that of L-[1-14C]leucine in all muscles. (2) The rate of oxidative decarboxylation of L-[1-14C]glutamine increased with increasing intracellular concentrations of glutamine. (3) The activities of glutamine aminotransferases K and L were more than 10-fold greater in rat than in chick skeletal muscles. (4) Mitochondrial phosphate-activated glutaminase activity was approx. 10-fold greater in chick than in rat skeletal muscles and increased with increasing glutamine concentrations. (5) An inhibitor of glutaminase, 6-diazo-5-oxo-L-norleucine, inhibited the rate of glutamine decarboxylation in chick, but not in rat, skeletal muscle. These findings suggest that glutamine degradation in skeletal muscle may be substantial and may make an important contribution to the regulation of intramuscular glutamine concentrations. A species difference in the pathways and the subcellular location for the conversion of glutamine into 2-oxoglutarate in rat and chick skeletal muscles is implied by the relative activities of glutamine-degrading enzymes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Muscle growth affects the metabolome of the pectoralis major muscle in red-winged tinamou (Rhynchotus rufescens);Poultry Science;2023-12

2. Physiological and Metabolic Functions of the Intestinal Epithelium: From the Small to the Large Intestine;Metabolism of Alimentary Compounds by the Intestinal Microbiota and Health;2023

3. Amino acids: Metabolism;Encyclopedia of Human Nutrition;2023

4. Amino Acids and Amino Acid Utilization in Swine;Sustainable Swine Nutrition;2022-11-16

5. Supplementation of reduced protein diets with;Animal Production Science;2022-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3