Studies on epitopes on low-density lipoprotein modified by 4-hydroxynonenal. Biochemical characterization and determination

Author:

Chen Q1,Esterbauer H2,Jürgens G1

Affiliation:

1. Institute of Medical Biochemistry

2. lnstitute of Biochemistry, Karl-Franzens University Graz, A-8010 Graz, Austria

Abstract

Oxidation of human low-density lipoprotein (LDL) was found to be accompanied by the generation of various reactive aldehydes. One of them, 4-hydroxynonenal (HNE), was shown to modify LDL to a form which represents a good model of oxidized LDL (ox-LDL). In order to investigate the epitopes newly formed on HNE-modified LDL, a polyvalent antiserum to HNE-LDL [anti-(HNE-LDL)] was raised in rabbits and the non-specific components were removed with native LDL coupled to CNBr-Sepharose 4B. Competitive fluorescence immunoassay analysis showed that anti-(HNE-LDL) recognized HNE-LDL, copper-oxidized LDL, HNE-albumin and to a lower extent HNE-modified high-density lipoprotein 3 (HNE-HDL3) and ox-HDL3 but not native LDL. A certain degree of cross-reactivity of the antibody with LDLs modified by either hexanal or 2,4-heptadienal was found. No reaction was obtained with LDL labelled with malondialdehyde. From the abilities of HNE-modified poly(L-amino acids) to compete with HNE-LDL for binding to anti-(HNE-LDL), it is postulated that lysine, tyrosine, arginine and histidine are involved in the formation of HNE-derived epitopes on apolipoprotein B (apo B). Using a double-sandwich fluorescence immunoassay [capture antibody: anti-(apo B); detection antibody: anti-(HNE-LDL)] we found that the HNE-derived epitopes were expressed at a far higher degree in ox-LDL and HNE-LDL than in native LDL.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3