Affiliation:
1. Building 10, Room 5N102, NIDDK, National Institutes of Health, 10 Center Drive MSC 1420, Bethesda, MD 20892-1420, U.S.A.
Abstract
This study examines the apparent affinity, catalytic-centre activity (‘turnover number’) and stereospecificity of the neuronal glucose transporter GLUT3 in primary cultured cerebellar granule neurons. Using a novel variation of the 3-O-[14C]methylglucose transport assay, by measuring zero-trans kinetics at 25 °C, GLUT3 was determined to be a high-apparent-affinity, high-activity, glucose transporter with a Km of 2.87±0.23 mM (mean±S.E.M.) for 3-O-methylglucose, a Vmax of 18.7± 0.48 nmol/min per 106 cells, and a corresponding catalytic-centre activity of 853 s-1. Transport of 3-O-methylglucose was competed by glucose, mannose, 2-deoxyglucose and galactose, but not by fructose. This methodology is compared with the more common 2-[3H]deoxyglucose methodology and the [U-14C]glucose transport method. The high affinity and transport activity of the neuronal glucose transporter GLUT3 appears to be an appropriate adaptation to meet the demands of neuronal metabolism at prevailing interstitial brain glucose concentrations (1–2 mM).
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献