The effect of the coupled oxidation of substrate on the permeability of blowfly flight-muscle mitochondria to potassium and other cations

Author:

Hansford R. G.1,Lehninger A. L.1

Affiliation:

1. Department of Physiological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, Md. 21205, U.S.A.

Abstract

1. Blowfly flight-muscle mitochondria respiring in the absence of phosphate acceptor (i.e. in state 4) take up greater amounts of K+, Na+, choline, phosphate and Cl-(but less NH4+) than non-respiring control mitochondria. 2. Uptake of cations is accompanied by an increase in the volume of the mitochondrial matrix, determined with the use of [14C]-sucrose and3H2O. The osmolarity of the salt solution taken up was approximately that of the suspending medium. 3. The [14C]sucrose-inaccessible space decreased with increasing osmolarity of potassium chloride in the suspending medium, confirming that the blowfly mitochondrion behaves as an osmometer. 4. Light-scattering studies showed that both respiratory substrate and a permeant anion such as phosphate or acetate are required for rapid and massive entry of K+, which occurs in an electrophoretic process rather than in exchange for H+. The increase in permeability to K+and other cations is probably the result of a large increase in the exposed area of inner membrane surface in these mitochondria, with no intrinsic increase in the permeability per unit area. 5. No increase in permeability to K+and other cations occurs during phosphorylation of ADP in state 3 respiration.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3