Purification and characterization of matrix metalloproteinase 9 from U937 monocytic leukaemia and HT1080 fibrosarcoma cells

Author:

Morodomi T1,Ogata Y1,Sasaguri Y2,Morimatsu M2,Nagase H1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160-7421, U.S.A.

2. Second Department of Pathology, Kurume University School of Medicine, Kurume, Japan

Abstract

The precursor of matrix metalloproteinase 9 (proMMP-9), also known as ‘92 kDa progelatinase/type IV procollagenase’, was purified from the conditioned medium of U937 monocytic leukaemia and HT1080 fibrosarcoma cell lines stimulated with phorbol 12-myristate 13-acetate. ProMMP-9 in these culture media is non-covalently complexed with the 29 kDa tissue inhibitor of metalloproteinases (TIMP), but free proMMP-9 was separated from the TIMP-proMMP-9 complex by chromatography on Green A Dyematrex gel. The final product was homogeneous on SDS/PAGE, with a molecular mass of 88 kDa without reduction and 92 kDa with reduction. Treatment of proMMP-9 with 4-aminophenylmercuric acetate converted the 88 kDa precursor into 80 kDa and 68 kDa forms. Gelatin-containing zymographic analysis showed zones of lysis associated with all three species. However, only the 68 kDa species was shown to be catalytically active by its ability to bind to alpha 2-macroglobulin. In the presence of an equimolar amount of TIMP, only the 80 kDa species was generated by treatment with 4-aminophenylmercuric acetate, but no enzyme activity was detected. This indicates that TIMP binds to the 80 kDa intermediate and inhibits the generation of the active 68 kDa species. Eight endopeptidases (trypsin, chymotrypsin, plasmin, plasma kallikrein, thrombin, cathepsin G, neutrophil elastase and thermolysin) were tested for their ability to activate proMMP-9. Of them, trypsin was the most effective activator of proMMP-9. Only partial activation (10-30%) was observed with plasmin, cathepsin G and chymotrypsin. The active forms generated by trypsin were identified as 80 kDa, 74 kDa and 66 kDa by their abilities to bind to alpha 2-macroglobulin. In the presence of an equimolar amount of TIMP, proMMP-9 was also converted into the same molecular-mass species by trypsin, but they were not proteolytically active. This suggests activated MMP-9 is inhibited by TIMP. Activated MMP-9 digested gelatin, type-V collagen, reduced carboxymethylated transferrin and, to a lesser extent, type-IV collagen and laminin A chain. The specific activity against gelatin was estimated to be 15,000 units/mg (1 unit = 1 microgram of gelatin degraded/min at 37 degrees C) by titration with alpha 2-macroglobulin. Comparative studies on digestion of gelatin and collagen types IV and V by MMP-9 and MMP-2 indicated that both enzymes degrade these substrates into similar fragments. However, the susceptibilities of laminin, fibronectin and reduced carboxymethylated transferrin to these two MMPs were sufficiently different to indicate differences in substrate specificities between these two closely related proteinases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3