Physiological stimulation regulates the exocytic mode through calcium activation of protein kinase C in mouse chromaffin cells

Author:

Fulop Tiberiu1,Smith Corey1

Affiliation:

1. Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, U.S.A.

Abstract

Adrenal medullary chromaffin cells release catecholamines and neuropeptides in an activity-dependent manner controlled by the sympathetic nervous system. Under basal sympathetic tone, catecholamines are preferentially secreted. During acute stress, increased sympathetic firing evokes release of both catecholamines as well as neuropeptides. Both signalling molecules are co-packaged in the same large dense core granules, thus release of neuropeptide transmitters must be regulated after granule fusion with the cell surface. Previous work has indicated this may be achieved through a size-exclusion mechanism whereby, under basal sympathetic firing, the catecholamines are selectively released through a restricted fusion pore, while less-soluble neuropeptides are left behind in the dense core. Only under the elevated firing experienced during the sympathetic stress response do the granules fully collapse to expel catecholamines and neuropeptides. However, mechanistic description and physiological regulation of this process remain to be determined. We employ electrochemical amperometry, fluid-phase dye uptake and electrophysiological capacitance noise analysis to probe the fusion intermediate in mouse chromaffin cells under physiological electrical stimulation. We show that basal firing rates result in the selective release of catecholamines through an Ω-form ‘kiss and run’ fusion event characterized by a narrow fusion pore. Increased firing raises calcium levels and activates protein kinase C, which then promotes fusion pore dilation until full granule collapse occurs. Our results demonstrate that the transition between ‘kiss and run’ and ‘full collapse’ exocytosis serves a vital physiological regulation in neuroendocrine chromaffin cells and help effect a proper acute stress response.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3