Affiliation:
1. Department of Biochemistry and Molecular Biology, Ness-Ziona, 70450, Israel
2. Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 70450, Israel
Abstract
We have examined the effects of 11 substitutions of active centre gorge residues of human acetylcholinesterase (HuAChE) on the rates of phosphonylation by 1,2,2-trimethylpropyl methylphosphonofluoridate (soman) and the aging of the resulting conjugates. The rates of phosphonylation were reduced to as little as one-seventieth, mainly in mutants of the hydrogen-bond network (Glu-202, Glu-450, Tyr-133). These recombinant enzymes as well as the F338A, W86A, W86F and D74N mutant HuAChEs varied in their resistance to aging (15–3300-fold relative to the wild type). The most dramatic resistance to aging was observed for the phosphonyl conjugate of the mutant W86A enzyme (1850–3300-fold relative to the wild type). It is proposed that Trp-86 contributes to the aging process by stabilizing the evolving carbonium ion on the 1,2,2-trimethylpropyl moiety, via charge–π interaction. The rate-enhancing effect of Trp-86 provides a rationale for the unique facility of aging in soman-inhibited cholinesterases, compared with the corresponding conjugates in other serine hydrolases. Replacements of Glu-202 by aspartic acid, glutamine or alanine residues resulted in a similar (1/130–1/300) decrease of the rates of aging. A comparable decrease was also observed for the conjugate of the F338A mutant. These results, and the similar pH dependence of aging rates for the wild-type and E202Q and F338A mutant HuAChEs, indicate that Glu-202 is not involved in proton transfer to the phosphonyl moiety. On the basis of these findings and of molecular modelling we suggest that Glu-202 and Phe-338 contribute to the aging process by stabilizing the imidazolium of the catalytic triad His-447 via charge–charge and charge–π interactions respectively, thereby facilitating an oxonium formation on the phosphonyl moiety.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
166 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献