Affiliation:
1. National Institute for Medical Research, Mill Hill, London NW7 1AA, U.K.
Abstract
We report the reconstruction, from a core-particle and split-protein fraction, of the larger subribosomal particle of rabbit reticulocytes. The reassembled particle was active in polyphenylalanine synthesis and in the puromycin reaction. The core-particles and split-protein fractions were obtained by treatment of the larger subparticle with salt solutions containing NH4+ and Mg2+ in the molar ratio 40:1 over the range 2.25-2.75 M-NH4Cl/56-69mM-MgCl2 at 0° C. This treatment led to the loss of about eight proteins (approx. 17% of the protein moiety), which were found wholly or largely in the split-protein fraction as shown by two-dimensional gel electrophoresis. The core particle retained 5S rRNA and had much decreased (no more than 10% of control) ability to function in the puromycin reaction or in poly (U)-directed polyphenylalanine synthesis. Activity was recovered when the recombined core-particle and split-protein fractions were dialysed overnight at 4° C against 0.3M-NH4Cl/15mM-MgCl2/1mM-dithiothreitol/15% (v/v) glycerol/20mM-Tris/HCl, pH 7.6, and then heated for 1 h at 37° C. The recovery was 40-80% of the original activity. Raising the concentration of MgCL2 to 300 mM in 2.5 M-NH4CL led to the removal of seven rather than eight proteins, and the core particle remained active in the puromycin reaction. We infer that the protein retained by raising the concentration of Mg2+ is an essential component of the peptidyltransferase centre of the ribosome.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献